B.Sc. B.Ed SEM-I Examination: 2019 Course-CC1

Subject: Elementary Algebra and Calculus Time: 2 Hours F.M. 50

Answer any ten questions

```
(5 \times 10 = 50)
```

- 1. Prove that $\sin\{i \log \frac{p-iq}{p+iq}\} = \frac{2pq}{p^2+q^2}$ where p, q are real and $(p, q) \neq (0, 0)$.
- 2. Solve the equation $x^3 3x + 1 = 0$ by Cardan's method.
- 3. If a, b, c are positive real numbers then prove that $(a^2b + b^2c + c^2a)(ab^2 + bc^2 + ca^2) \ge 9a^2b^2c^2$.
- 4. Determine the value of 'c' and 'd' so that the system of equation

$$x + 2y + z = 1$$
; $3x + y + 2z = d$; $cx - y + 4z = d^2$

has (i) a unique solution, (ii) no solution, (iii) many solutions in the field of real numbers.

5. Determine the rank of the matrix A =

$\overline{1}$	2	1	0
2	4	8	6
0	0	5	8
3	6	6	3

- 6. Find the inverse of A, where A = $\begin{pmatrix} 1 & 1 & 2 \\ 2 & 4 & 4 \\ 3 & 3 & 7 \end{pmatrix}$
- 7. Show that, the function g defined by $g(x) = x^2 \sin \frac{1}{x}$ when $x \neq 0$ and g(0) = 0 is differentiable everywhere but the derived function g is not continuous at x = 0.
- 8. If $y = e^{ax} cosbx$, show that $y^2 2ay_1 + (a^2 + b^2)y = 0$
- 9. Use L Hospital's rule to prove the following limit.

$$\lim_{x\to 0} \frac{tanx-x}{x-sinx}$$

- 10. Find the reduction formula for $\int sin^m x cos^n x dx$ where *m* and *n* being positive integer, greater than 1.
- 11. The part of the parabola $y^2 = 4ax$ bounded by the latus rectum revolves about the tangent at the vertex. Find the volume and the area of the curved surface of the reel generated.
- 12. Show that

$$\int_{0}^{\frac{\pi}{2}} \cos^{m} x dx = \int_{0}^{\frac{\pi}{2}} \sin^{m} x dx = \frac{\sqrt{\pi}}{2} \frac{\left[\frac{(m+1)}{2}\right]}{\left[\frac{(m+2)}{2}\right]} \quad \text{Where, } m > -1$$